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Summary: Treatment of a slurry of (PCy3)2NiCl2 in
pentane with 1-norbornyllithium did not lead to the
expected bis(1-norbornyl) nickel complex but instead led
to formation of a 1-norbornene adduct, which has been
structurally characterized. The X-ray data and the
electrochemistry of the 1-norbornene complex suggest a
metallacyclopropane extreme of olefin binding, stemming
from the highly reactive nature of the bridgehead double
bond.

Double bonds located at a bridgehead position of
fused-ring systems have fascinated chemists for many
years.1-3 The distortion of the π bond in these molecules
caused by twisting often imparts reactivity atypical of
a normal C-C double bond.3 The appearance of bridge-
head double bonds in important natural products such
as taxol4-6 has also sparked a great deal of interest in
learning about the susceptibility of these olefins to a
variety of reaction conditions that might be employed
in a total synthesis. Additionally, there is much impetus
for developing methods to systematically study the
reaction chemistry of the bridgehead double-bond func-
tionality, as the removal of a bridgehead double bond
in the calicheamicin/esperamicin family of enediyne
toxins is believed to be a primary step in the activation
process leading to arene-1,4-diyl formation, H-atom
abstraction, and DNA cleavage.7-10

While bridgehead double bonds in larger ring systems
are known to be relatively stable, the existence of
smaller ring systems with bridgehead double bonds such
as 1-norbornene (1) has been harder to evaluate, as
Wiseman predicted that the strain in bridgehead alk-
enes is closely related to the strain of the corresponding

trans-cycloalkene.11 Indirect evidence of the anti-Bredt12

olefin 1 has been obtained by trapping transiently
generated 1 with a variety of organic reagents or by
monitoring the thermal rearrangement products of
precursor derivatives.13-17 A number of computational
methods have also been applied to 1 in order to better
understand the structure, energetics, and reactivity of
this highly sensitive molecule.18-23 However, as no
direct observation of 1 in solution has ever been reported
and no reversible trapping agent for this molecule has
ever been prepared, its chemistry has been difficult to
study.

A transition-metal binding approach, similar to what
has been employed in benzyne chemistry,24-29 could be
one possible strategy to obtain stable precursors of these
short-lived compounds for synthetic and mechanistic
studies. While transition-metal complexes of larger
bridgehead double bonds are known30-35 or speculated
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to have formed in metal-mediated reactions,36-38 the
trapping of smaller, more reactive bridgehead double
bonds remains much more problematic, especially since
trapping must usually be competitive with dimer forma-
tion resulting from formal 2 + 2 cycloaddition reactions.
Here we report a new method to prepare a transition-
metal adduct of 1-norbornene that overcomes the prob-
lems associated with competitive trapping and also
describe the unexpected electrochemistry of this new
transition-metal adduct.

Treatment of a slurry of (PCy3)2NiCl2 in pentane with
2 equiv of 1-norbornyllithium was found to afford
(PCy3)2NiHCl39 and a new product (2; eq 1) that
displayed two doublets in the 31P{1H} NMR spectrum.

The ratio of (PCy3)2NiHCl to 2 was 1:22 after 10 min.
Since the 31P{1H} NMR data for 2 could also be
consistent with a cis-(PCy3)2Ni(norbornyl)Cl complex,
crystals of 2 were grown to determine the true identity
of the new compound. X-ray analysis clearly identifies
the new product as an η2-bound adduct of 1-norbornene,
and the ORTEP diagram is shown in Figure 1.

The reaction conditions appear to be key in the overall
transformation to the η2-bound adduct.40 The starting
material (PCy3)2NiCl2 is highly insoluble in pentane;
thus, it can be expected that any alkylated nickel
complex formed in situ is then exposed to a large excess
of norbornyllithium. These basic conditions may be

critical in removing HCl that could possibly result from
a â-hydride elimination reaction, as described in eq 2.

An alternative mechanism may involve formation of a
Ni(norbornyl)2 species, which then eliminates hydro-
carbon en route to 2. One equivalent of norbornane
relative to nickel starting material is produced in the
reaction described in eq 2. Repeating the lithiation in a
3:1 mixture of pentane and furan did not lead to any
furan adducts of norbornene,15 consistent with an in-
tramolecular process in which olefin 1 is never released
from the metal.

Of note, the C(1)-C(2) bond length of 1.454(6) Å is
especially long for a carbon-carbon double bond. (PCy3)2-
Ni(η2(C,C)-methyl methacrylate) (3) is the only other
olefin complex containing the (PCy3)2Ni fragment that
has been crystallographically characterized. Even with
the presence of an electron-withdrawing ester group, the
coordinated double bond in 3 (1.410(13) Å)41 was found
to be shorter than that observed in 2. DFT calculations
predict a CdC bond length of 1.3584 Å for uncomplexed
1.23

The crystallographic data thus support the metalla-
cyclopropane extreme of olefin coordination for com-
pound 2 (A; Chart 1) instead of the Dewar-Chatt
description, which does not affect the oxidation state of
the metal (B; Chart 1).42 To determine if the bonding is
more a result of a strongly π-basic metal or of the
unusual nature of the bridgehead double bond of 1-nor-
bornene, electrochemical measurements were performed
on a series of related olefin adducts of (PCy3)2Ni (Table
1). Both (PCy3)2Ni(η2-1-hexene) and (PCy3)2Ni(η2-eth-
ylene) display three sequential oxidations in the cyclic
voltammograms, consistent with stepwise oxidation of
a Ni(0) species to Ni(III). Compound 2, on the other
hand, displays only one irreversible oxidation. One
possible interpretation of these data is that the irrevers-
ible oxidation of 2 is in fact an oxidation of Ni(II) to Ni-
(III), consistent with the metallacyclopropane character
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Figure 1. ORTEP diagram of the 1-norbornene adduct 2.
Ellipsoids are shown at the 50% level. Hydrogen atoms are
omitted for clarity. Selected bond lengths (Å): Ni(1)-C(1)
) 1.949(4), Ni(1)-C(2) ) 1.957(5), C(1)-C(2) ) 1.454(6),
Ni(1)-P(1) ) 2.186(3), Ni(1)-P(2) ) 2.1878(16).

Chart 1
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of the organometallic fragment. The energy of the
oxidation is not unreasonable for a Ni(II)-dialkyl spe-
cies, and the oxidation of a related compound, (dippe)-
Ni(CH3)2 (dippe ) 1,2-bis(diisopropylphosphino)ethane),
was found to occur irreversibly at -0.02 V. A cis-dialkyl
complex containing alkyl groups more donating than
methyls should therefore occur at more reducing poten-
tials, such as that observed for 2. The 31P{1H} NMR
chemical shifts of 2 also appear much more downfield
than for reported Ni(0) complexes (Table 1), which may
lend additional support for Ni(II) character in 2. As-
suming then a Ni(II) oxidation state for 2, we conclude
that relief of ring strain in the unusual bridgehead
double bond is the primary reason for both the elongated
C-C bond lengths and the anomalous metal oxidation
state.

The preliminary reactivity of 2 was also explored. We
wondered whether oxidation could be used as a trigger
to release reactive 1 in solution. If so, oxidation could

be a facile way to explore the scope of additions of small
molecules to 1. Keese and co-workers reported that
chemically generated 1 in the presence of furan led to
the formation of furan adducts and norbornene dimers
(eq 3).15 We found, however, that oxidation of 2 by Fe-

(III) produced dinorbornyl as the only identifiable
organic compound (eq 4). Further studies directed at
olefin release and functionalization are underway.
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Table 1. Electrochemical and NMR Data for Olefin
Adducts of (PCy3)2Ni and Related Compoundsa

compd oxidn potential (V)
31P{1H} NMR

chem shift (ppm)

2 -0.23 only 44.1, 39.6 (C6D6)
(PCy3)2Ni(η2-1-hexene) -0.59, 0.16, 0.98 35.0 (C6D12)43

(PCy3)2Ni(η2-ethylene) -0.45, 0.36, 1.04 34.4 (C6D6)
(dippe)Ni(CH3)2

44 -0.02 only 77.0 (C6D6)
a All potentials were measured in THF solution using 0.1 M

Bu4NPF6 and 3 mM Ni complex and referenced vs Ag/Ag+. Scan
rate: 10 mV/s. Values are reported as anodic peak potentials.
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